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$ Institut fur Theoretische Physik der Justus-Liebig-Universitat, Giessen, Federal Republic 
of Germany 
5 Institut fur Theoretische Physik der Johann Wolfgang Goethe-Universitat, Frankfurt am 
Main, Federal Republic of Germany 
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Abstract. The free Schrodinger equation for collective multipole degrees of freedom is 
linearised so that energy and momentum operators appear only in first order. The wavefunc- 
tion solving this linearised equation carries a collective spin, depending on multipolarity. 
We derive the operator of the collective spin and its eigenvalues by various methods. 

1. Introduction 

Spin degrees of freedom were first considered in connection with electrons. Because 
several experimental results, for example the doublet splitting of the alkali metals, 
could not be interpreted by classical means, Uhlenbeck and Goudsmit (1925, 1926) 
claimed the hypothesis that the electron has an intrinsic angular momentum of h. 
Shortly after that, Pauli (1927) postulated the so-called Pauli equation, which describes 
the spin of the electron in a non-relativistic manner. Contrary to this phenomenological 
approach, the spin and correct magnetic moment ( g  = 2) of the electron were directly 
derived by Dirac (1928) from his relativistic equation. In this sense it might be obvious 
to mark the spin and spin magnetic moment as quantities generated by the theory of 
relativity, but this seems not to be true. Inspired by the fact that the free Dirac equation 
had been constructed from a linearisation of the free Klein-Gordon equation, LCvy- 
Leblond (1967) showed that the Pauli equation is obtained if the free Schrodinger 
equation is linearised, i.e. an equivalent equation with energy and momentum appearing 
only in first order is constructed, and electromagnetic potentials are coupled minimally. 
Therefore, we can assume that the spin and spin magnetic moment of the electron are 
not relativistic quantities, but originate due to the linearisation of the equation of 
motion. 

In this paper we want to apply the same linearisation procedure as known from the 
case of electrons to physical systems which are described with multipole degrees of 
freedom. Multipole degrees of freedom are related to the collective dynamics of 
physical systems. Therefore, the linearisation of Schrodinger equations of collective 
multipole degrees of freedom leads to collective spin degrees of freedom in complete 
analogy to the case of the Dirac and Pauli equations. 
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For example, in nuclear physics, collective properties of the nucleus, as surface 
vibrations of a spherical nucleus, rotational motion of a deformed nucleus or giant 
resonances, can be described by collective multipole coordinates (Eisenberg and 
Greiner 1987, Bohr and Mottelson 1975). As shown in a short note (Greiner et a1 
1988), the linearisation of the Schrodinger equation for collective nuclear quadrupole 
surface vibrations yields a collective spin of $ h. Also collective spins for higher 
multipolarities have been derived in this note. 

The aim of this paper is to show different derivations of the collective spin from 
the linearised free Schrodinger equations for collective multipole degrees of freedom. 
In $ 2  we briefly sketch the linearisation procedure of a multi-dimensional free 
Schrodinger equation. Section 3 is devoted to the various methods of deducing the 
collective spin of any multipolarity. Results are presented in $ 4. In $ 5 we then try 
to indicate possible applications of the concept of collective spin. 

2. Linearisation of the free ( 2 A  + 1)-dimensional Schrodinger equation 

Schrodinger equations describing 2A + 1 multipole degrees of freedom are used for 
example for the treatment of nuclear collective surface vibrations. In this case the 
vibrations of spherical nuclei are described by collective surface coordinates a,,& defined 
by the expansion of the nuclear surface as follows (Eisenberg and Greiner 1987) 

r 1 

The Hamiltonian for surface vibrations of multipolarity A is rotationally invariant and 
has the following structure in lowest order in these coordinates: 

=-E 1 + Y E  CA ( - I ) ~ C Z A ~ C Z - ~ .  

2 B A  P LL 

The quantities rAP are the canonically conjugate momenta. Since the coordinates CY,, 
are complex, 

= ( - l ) P a A - P  

we first introduce real coordinates xi"), which are easier to handle: 

with p = 1 , .  . . , A. 
In shorthand notation these transformations read 

X ( A )  , = c X y a A j  
J 
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where the transformation matrix X ( A )  is defined by equation ( 3 a ) .  The corresponding 
momenta are given by ( p = 1, . . . , A ) 

or in shorthand notation 

pjA'=CP!:)TA~. 
J 

The new coordinates and momenta fulfil the usual commutation relations 

[pj", x j A ' ]  = -ifis ' I  . 
Using these coordinates and momenta we can rewrite the Hamiltonian (2) as follows: 

This form is more adequate for the linearisation procedure than (2) in the spherical 
representation. 

In a completely analogous manner as that in which the three-dimensional Schrodin- 
ger equation is linearised (LCvy-Leblond 1967) or the Dirac equation is derived from 
the Klein-Gordon equation (Dirac 1928), we linearise the (2A + 1)-dimensional free 
Schrodinger equation 

The linearised free Schrodinger equation must have the following structure: 

In this equation the time derivative and momenta appear only in first order. The 
operators P'", QIA' and R(' )  will be determined next. We assume that the wavefunction 
$ solves the free Schrodinger equation ( 5 )  and the linearised free Schrodinger equation 
( 6 ) .  This is achieved by the definition of a second linear operator 

with the property 

Using the abbreviations 
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we obtain from (8) the conditions 

Q ! , A J ' Q ~ A ) +  Q ; A ) ' Q ; ~ !  = - . ~ s , ~ I  i, j = 1 , .  . . ,2A + 3 .  (10) 

If we choose 

where is an arbitrary, but non-singular matrix, the primed Q-operators have to be 

Inserting (1 1 a )  and ( 1  1 b) into (10) we find that the 2A f 2  matrices ytA'(  i = 1 ,  . . . ,2A + 
2) have to fulfil the Clifford algebra: 

I] i, j = 1 , .  . . ,2A + 2 .  (12) ( A )  ( A ) +  ( A )  ( A ) = 2 6 1  YI Yl Yl YI 

An irreducible representation of these matrices is given by the following scheme: let 
y:'' be defined by the usual 4 x 4 Dirac matrices 

I O  
Y:"=(, J. 

Here, the U, matrices are the well known Pauli matrices. Then the 2A + 2 matrices yl"' 
can be successively calculated using the relations 

Y::li2=(0 I O  - I )  

with 

y\i;i)=i( O I  ). 
- I  0 

(14b) 

The scheme (14) allows one to construct the y matrices of multipolarity A from those 
of multipolarity A - 1 .  
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For simplicity we set M ( " ) =  I in the following. Then the linearised (2A + 1)- 
dimensional free Schrodinger equation (6) finally reads 

The wavefunction + can be written as 

*=(,"). 
Both functions 4 and x satisfy the free Schrodinger equation (5). 

3. Deduction of the collective spin 

The linearised free Schrodinger equation (15) contains spin degrees of freedom, which 
we denote as collective spin degrees of freedom. This notation is justified since 
Schrodinger equations for multipole degrees of freedom generally describe collective 
degrees of freedom, e.g. the nuclear surface vibrations. 

In the following we present three methods for the deduction of the collective spin. 
The first one is an investigation of the commutator between the angular momentum 
operator and the linearised free Hamiltonian from which the collective spin results. 
The transformation property of the wavefunction under spatial rotations is the subject 
of the second method and leads also to the same collective spin. In the third approach 
the time reversal operator depending on the collective spin will be constructed. 

3.1. Analogy between angular momentum and spin tensor 

The angular momentum operator of multipolarity A is, in spherical components, 
(Eisenberg and Greiner 1987) 

The constant factor MA can be determined from the requirement that the angular 
momentum commutator algebra for the Cartesian components, [LE, tj] = iheljkLk with 
i, j ,  k = 1,2,3,  is fulfilled: 

(18) 

If the Cartesian components of the angular momentum operator are expressed within 
the new coordinates x ! ~ )  and momenta p i " ) ,  they will be specific linear combinations 
of elements of the angular momentum tensor LE; 

MA = i(-l)"[fA(A + 1)(2A + l)]"*. 

for i = 1 , 2 , 3  (19) p =$A)(L(A)) mn 

where 
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The symbol 2 stands for linear combination. For example, for quadrupole degrees 
of freedom the angular momentum operators are 

~ j ; z ’  = L:;) + LG) + %5 L:;] 

L12’ = LIZ,’ + L::’ + t/sL:;’ 

L‘,z’ = 2Lg’ + Lk2,’. 

(21) 

Generally the z-component can be written as 

(22) 

Each element of the angular momentum tensor L‘,“,’ is of course Hermitian. The 
following commutator algebra between two elements is valid: 

[ L ~ , A ’ ,  L ~ , ! I =  -ih(G,,Lj;’+ 6 , , ~ ~ , ’ + 6 , , ~ ‘ , : ’ + 6 , , ~ : ~ ’ ) .  (23) 

The commutator between the free linearised Hamiltonian H v )  of (16) and LE,’ yields 

Because the right-hand side of this equation does not vanish, the commutator between 
H v ’  and the Cartesian components (19) of the angular momentum operator also does 
not vanish. 

Introducing a Hermitian spin tensor 

(25) s‘,“; = -+if,[ y ( A )  ( A )  
m , ~ n  1 

we find 

[H‘,“’, L:; + s:;] = 0.  (26) 

In addition the commutator between two elements of the spin tensor yields the same 
algebra as in the case of the orbital angular momentum tensor (see (23)) 

[Sf’, ~(mh;] = -ih(S,,Sj,“’+ S,,S:,‘+ s,,s‘,:’+ Sl,,Sjk’). (27) 

As a consequence one can immediately define the Cartesian components of the spin 
operator analogously to the angular momentum operator given in (19): 

for i = 1 , 2 , 3 .  (28) $ A )  = C p ( S ‘ , “ , ‘ )  

For quadrupole degrees of freedom the spin operators are then 

SL2) = si;’ + si;’ + %/7s::) 
s?’ = si;’ + ski’ + As:;’ 
Sl” = 2s::’+ s:;’ 

or in explicit irreducible form 
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with 

For arbitrary multipolarity A the z-component of the spin operator is equal to 

In conclusion, we have derived the collective spin operator for any multipolarity A 
using the analogy between the orbital angular momentum tensor and the spin tensor. 

3.2. Transformation property of the wavefunction under spatial rotations 

For a clear presentation we will restrict this approach to quadrupole degrees of freedom 
only, e.g. to quadrupole surface vibrations. In principle it can be handled for any 
multipolarity analogously to the quadrupole case, but the treatment will become rather 
tedious. 

The total angular momentum operator of a system is determined by the transforma- 
tion property of the wavefunction under spatial rotations 

$’= exp(i/hq5J)+ = exp[i/A@(L+ S)]+ (32) 

where (I,’ is the wavefunction in the rotated coordinate system and (I, is the wavefunction 
in the fixed one; 4 represents the angle of rotation between the two coordinate systems. 
Note the plus sign in the exponent of (32) which indicates that the coordinate system 
is rotated. The wavefunction (I, is an eight-component spinor in the quadrupole case. 
Its transformation behaviour can be specified, for example, with the Lagrangian density 
corresponding to the linearised free Schrodinger equation (15): 

Then the invariance of the scalar quantity 
9 ( 2 ) ’ ( x y )  = g ( 2 ) ( x 3  (34) 

completely determines the transformation property of the wavefunction under spatial 
rotations. It is sufficient to consider infinitesimal rotations only. 

In order to extract the correct transformation properties of the wavefunction under 
spatial rotations from the requirement (34), let us first consider the transformation 
behaviour of the coordinates and momenta. The following relations hold for the 
spherical quadrupole coordinates a2,+ and momenta r2@ (Eisenberg and Greiner 1987) 
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The matrix D2 (for definition see Rose (1957)) depends on the three Euler angles a, 
p and y, defined as follows: a describes a rotation around the z-axis, p a rotation 
around the new y-axis and y a rotation around the z‘-axis. With that the following 
result yields for x \ ~ ) ’  and pi”’: 

Since thz coordinates x!” are real, the matrix R‘” is an orthogonal matrix. For 
infinitesimal rotations we obtain 

1 0 0 -2( 6a + 6 y )  

. (37) 
- w 4 1 1 2(6a+Sy)  0 0 w 

- SP 1 J S S ~  - ( a a + ~ y )  
0 -JSsp 1 0 
0 Sa+6y  0 1 

(Rj;Z’(Sa, w, 6 7 ) )  = 

For these infinitesimal rotations equation (32) now becomes 

= ( 1  +; [spsl”+(sa + 6y)SF’I +(Xl”). ) 
From the first step of this transformation it becomes obvious that no rotations about 
the x-axis can be generated with infinitesimal Euler angles; equations (21), (36) and 
(37) were used in the second step. 

It remains to clarify the transformation properties of the y matrices. The y12)’ 
matrices of the rotated coordinate system have to fulfil the Clifford algebra (12) and 
have to be Hermitian of course. Because of these two conditions the primed ~ 1 ~ ’ ’  
matrices are given by the corresponding y12) matrices of the fixed coordinate system 
by means of a unitary transformation U ( a ,  p, y )  (Good 1955) 

I (39) 
A unitary transformation does not change the physics, so that as a consequence yi2” 
can be set equal to yi2’ 

yy  = j y y ! 2 ’  U-’ 

Y l 2 ” =  Yi ( 2 )  i =  1,. . . , 6 .  (40) 
With the equations (14), (36)-(38) and (40), the requirement (34) of rotational 
invariance of the Lagrangian density finally yields 
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(41)  

3.3. Time reversal symmetry 

For isolated physical systems the symmetry under time reversal is assumed to be valid. 
This means that the physics does not change when the progression in time is reversed. 
For spinless systems the corresponding time reversal operator is simply the complex 
conjugation operator K (see, e.g., Schiff 1968). Because the introduced coordinates 
x i A )  are real and the following relation holds for the spherical momenta (Eisenberg 
and Greiner 1987), 

K ~ , , K - ‘  = r :p  = - ( - - I ) ~ ~ ~ - ~  

Since the spin operator is also an angular momentum operator, it has the same behaviour 
under time reversal as the latter operator. Introducing a new time reversal operator 
T for systems with spin, we have to require the relation 

T(A)s~A)T(A) -~  = TF)KSIA’K-’TY’-l  

Tb“’-‘ (43 - - TpJ$A)* 

slA I 
I .  

= -  

Ty’ is an additional operator which only acts on the spin degrees of freedom. 
In order to derive an explicit expression for T r ’ ,  we assume that the linearised 

Schrodinger equation ( 1 5 )  is time reversal invariant. In other words, H:“’ has to 
commute with T”’. In the following we treat again only the quadrupole case. 

The requirement of invariance 

[ T ( 2 ) ,  HY’] = 0 (44 )  
leads to 

‘ (2 )  ( 1 ) ’  - ( > ) - I  = ( 1 )  TO yi TO YI 
is defined via the matrix where 

(45a 

(456 



3236 M Greiner, W Scheid and R Herrmann 

The solution of (45a) is 
rk2’= exp[- i . r r /h(~k:’+~:Zz’+JS~~~)) l  

= exp[-i.rr/ ~ s L ~ ’ ] .  (46) 
This result assures the validity of (43). 

Let us briefly summarise the result. The requirement of time reversal symmetry 
leads to an expression for the x-component of the spin operator for quadrupole degrees 
of freedom in accordance with the results of § §  3.1 and 3.2. 

4. Results for collective spin eigenvalues 

The spins as functions of the multipolarity A of the coordinates can be calculated by 
diagonalising the corresponding irreducible spin operators. The results are shown for 
A s 7 in table 1. They can also be derived by decomposing the half-integer group 
representation of SO(2A + 1) to SO(3) and are given in table form by Armstrong and 
Judd (1970). The spin values are for the quadrupole case, 0 and 3 for the octupole 
case and 2 and 5 for the hexadecupole case. They depend on multipolarity because 
the number of collective coordinates and, therefore, the number of required y matrices 
increases. The number of y matrices of multipolarity A is 2 A  + 2  and their dimension 
2*+’. For multipolarities A 2 3 several spin multiplets appear. The largest spin value 
of each multipolarity A is obtained as s,,, = A ( A  + 1)/4. 

Table 1. The collective spin s for different multipolarities A. 

1 2 3 4 5 6 I 

I 3 
2 2 14 

2 11 
2 2 9 

8 
I 7 

5 
4 
2 

21 - - I5 I 3 5 
9 - 15 

5 I I  

9 

0 2 I 
- 

3 

5. Concluding remarks 

The linearisation of the collective Schrodinger equation of nuclear surface vibrations, 
that means the construction of an equivalent equation with energy and momentum 
appearing only in first order, yields a new spin degree of freedom and, therefore, 
describes new physics. Whereas the usual collective Schrodinger equation describes 
a spinless system, i.e. surface vibrations of an even-even nucleus, the linearised 
collective Schrodinger equation describes a system with spin degrees of freedom 
depending on the multipolarity of the surface vibrations. The situation is similar to 
the transition from the Klein-Gordon equation to the Dirac equation. The Klein- 
Gordon equation describes bosons with spin 0 (e.g., pions), whereas the Dirac equation 
describes fermions with spin f (e.g., electrons). 
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The question arises where these collective spin modes are realised in nature. A 
first application of the collective spin to nuclear quadrupole degrees of freedom has 
been considered by Wu et a1 (1988). In their fermion dynamical symmetry model (Wu 
et a1 1986) which is related to the interacting boson model (Arima and Iachello 1981) 
it is assumed that the active pseudo-spin of a nucleon must be i (i-active scheme) in 
order to produce angular momenta 0 and 2 if two identical nucleons are coupled to 
a pair. They have shown that the collective spin 1 is also related to the U(6/4) nuclear 
supersymmetry (Wu et a1 1988). 

Another, at first more mathematical, application would be the introduction of a 
scalar potential or a vector potential in the linearised collective Schrodinger equation. 
For nuclear quadrupole surface degrees of freedom this would lead to a model of a 
linearised vibrator or a linearised rotator or even to a linearised rotation-vibration 
model if the equations of motion are transformed to a rotating coordinate system. One 
can investigate which aspects of even-odd nuclei are describable with these models. 
One may also think of a linearised treatment of the coupling between several surface 
degrees of freedom of different multipolarity such as quadrupole and octupole ones. 
Also one can examine linearised isovectorial oscillations, such as the oscillation of a 
proton liquid against a neutron liquid both with the intrinsic spin of the quadrupole 
case. 

The proposed concept of linearisation, which is shown for nuclear surface vibrations 
in this publication, could be directly transferred to other nuclear collective degrees of 
freedom. For example, the collective density vibrations in the case of giant resonances 
could be treated in the linearised picture as well as their interaction with surface 
vibrations. This would lead to generalised linearised collective models. Such models 
may have applications also in other fields of physics, e.g. in elementary particle physics. 
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